Centers and homotopy centers in enriched monoidal categories

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strictification of Categories Weakly Enriched in Symmetric Monoidal Categories

We offer two proofs that categories weakly enriched over symmetric monoidal categories can be strictified to categories enriched in permutative categories. This is a ”many 0-cells” version of the strictification of bimonoidal categories to strict ones.

متن کامل

Homotopy Locally Presentable Enriched Categories

We develop a homotopy theory of categories enriched in a monoidal model category V. In particular, we deal with homotopy weighted limits and colimits, and homotopy local presentability. The main result, which was known for simplicially-enriched categories, links homotopy locally presentable V-categories with combinatorial model V-categories, in the case where all objects of V are cofibrant.

متن کامل

On the Homotopy Theory of Enriched Categories

We give sufficient conditions for the existence of a Quillen model structure on small categories enriched in a given monoidal model category. This yields a unified treatment for the known model structures on simplicial, topological, dgand spectral categories. Our proof is mainly based on a fundamental property of cofibrant enriched categories on two objects, stated below as the Interval Cofibra...

متن کامل

Convergence and quantale-enriched categories

Generalising Nachbin's theory of ``topology and order'', in this paper we   continue the study of quantale-enriched categories equipped with a compact   Hausdorff topology. We compare these $V$-categorical compact Hausdorff spaces   with ultrafilter-quantale-enriched categories, and show that the presence of a   compact Hausdorff topology guarantees Cauchy completeness and (suitably   defined) ...

متن کامل

Monoidal categories and multiextensions

We associate to a group-like monoidal groupoid C a principal bundle E satisfying most of the axioms defining a biextension. The obstruction to the existence of a genuine biextension structure on E is exhibited. When this obstruction vanishes, the biextension E is alternating, and a trivialization of E induces a trivialization of C. The analogous theory for monoidal n-categories is also examined...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2012

ISSN: 0001-8708

DOI: 10.1016/j.aim.2012.04.011